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We present a spectral representation of the mean-square solution of the frac-
tional kinetic equation (also known as fractional diffusion equation) with
random initial condition. Gaussian and non-Gaussian limiting distributions of
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1. INTRODUCTION

Fractional diffusion equations/fractional kinetic equations were introduced
to describe physical phenomena such as diffusion in porous media with
fractal geometry, kinematics in viscoelastic media, relaxation processes in
complex systems (including viscoelastic materials, glassy materials, synthe-
tic polymers, biopolymers), propagation of seismic waves, anomalous dif-
fusion and turbulence (see Caputo, (16) Glöckle and Nonnenmacher, (34)

Mainardi, (49, 51) Saichev and Zaslavski, (67) Zaslavski, (80) Mainardi and
Tomirotti, (52) Kobelev et al., (41) Metzler et al., (54) Hilfer, (37) and the referen-
ces therein). These equations are obtained from the classical diffusion
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equation by replacing the first and/or second-order derivative by a frac-
tional derivative (see Oldham and Spanier, (58) Samko et al., (68) Miller and
Ross, (55) Gorenflo and Mainardi, (36) Djrbashian, (21) Podlubny, (60) Butzer and
Westphal (15) for different types of fractional derivatives, fractional integrals
or fractional operators in general and their properties). In the non-stochas-
tic situation, fractional diffusion equations/fractional kinetic equations
have been studied by Schneider and Wyss, (71) Kochubei, (42, 43) Fujita, (30)

Prüss, (62) Mainardi, (50) Saichev and Zaslavski, (67) Zaslavski, (80) Gorenflo et
al., (35) and others. A more general fractional Burgers equation has been
considered by Biler et al. (11) (see also Woyczynski (79)).

We are interested in fractional-in-time and in-space diffusion equa-
tions with random initial conditions as models of random fields with sin-
gular spectra which describe the singular and fractal properties of real data
arising in applied fields such as turbulence, hydrology, ecology, geophysics,
air pollution, economics and finance. It will be seen that renormalized
solutions of fractional diffusion equations with random data may possess
long-range dependence (LRD) and intermittency.

The fractional operators are natural mathematical objects to describe
the LRD and/or intermittency phenomena. In particular, Gay and
Heyde (32) introduced a class of random fields that allow LRD via the
stochastic operational Laplace equation with fractional Laplace operator.
Anh et al., (5) Angulo et al. (4) introduced a fractional stochastic heat equa-
tion in which the n-dimensional Laplacian D is replaced by a fractional
Laplacian of the form −(I−D)c/2 (−D)a/2, a > 0, c \ 0, where the opera-
tors −(I−D)c/2, c \ 0 and (−D)a/2, a > 0, are interpreted as inverses of
the Bessel and Riesz potentials respectively. In fact, based on a new
concept of duality of generalised random fields defined on fractional
Sobolev spaces introduced in Ruiz-Medina et al., (64) Anh et al. (5) prove the
existence of a class of random fields defined by the equation

(I−D)
c

2 (−D)
a

2 c(x)=e(x), e(x) — white noise, x ¥ Rn, (1.1)

or equivalently (in the sense of second-order moments) by the spectral
density

f(l)=
c
|l|2a

1
(1+|l|2)c

, c > 0,
n
2
< a < 1+

n
2
, c \ 0, l ¥ Rn.

(1.2)

These random fields were named fractional Riesz–Bessel motion (fRBm). It
is noted that in view of (1.2), fractional Brownian motion (fBm) is a limit-
ing case of fRBm with c=0, and fRBm displays LRD (as |l|Q 0) of order
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a for a > 1+n2 . It displays second-order intermittency, i.e, clustering of
extreme values, (as |l|Q.) of order a+c. The presence of the Bessel
operator is essential for a study of stationary solutions of (1.1). In fact, this
case requires 0 < a < n2 and a+c > n2 ; that is, the condition c > 0 is neces-
sary. The parameter of the Bessel operator is also useful in determining
suitable conditions for the spectral density of the solutions of fractional
kinetic equations to belong to L1(Rn) (see (3.2) below). The importance of
this parameter is discussed after (3.5) below.

On the other hand, random fields with singular spectra can be
obtained as rescaled solutions of the linear diffusion equations with
singular initial conditions (see Albeverio et al., (1) Leonenko and
Woyczynski, (46) Anh and Leonenko (6–8)). Recently, several researchers
investigated the Burgers equation with random data which relates to the
heat equation via the Cole–Hopf transformation (see Bulinski and
Molchanov, (14) Albeverio et al., (1) Funaki et al., (31) Leonenko and
Woyczynski, (47) Woyczynski, (79) Leonenko, (45) Bertoin, (10) Ryan, (66) Der-
moune et al. (20)). Beghin et al. (9) considered scaling laws for linear
Korteweg–de Vries equation or Airy equation with random data. Anh and
Leonenko (8, 7) presented the theory of renormalization and homogenization
of fractional-in-time or in-space diffusion equation with random data.

Our paper is motivated by the works of Leonenko and Woyczynski, (46)

Ruiz-Medina et al., (65) Anh and Leonenko (6–8) in which Gaussian and non-
Gaussian scenarios are presented for the classical heat equation (Leonenko
and Woyczynski, (46) Anh and Leonenko (6)), fractional-in-time diffusion-
wave equation (Anh and Leonenko (8, 7)) and fractional-in-space diffusion
equation (Ruiz-Medina et al., (65) Anh and Leonenko (7)) with singular and
possibly non-Gaussian initial conditions.

We generalize the results of Anh and Leonenko (6–8) and Ruiz-Medina
et al. (65) to the fractional-in-time and fractional-in-space diffusion equation
and obtain new Gaussian and non-Gaussian scenarios for the renormalized
solution of the resulting fractional diffusion equation with random data. In
a sense, our results are the non-Gaussian central limit theorems for solu-
tions of generalized kinetic equations with singular data (see Taqqu, (75)

Dobrushin and Major (24) and others). Note that the renormalization, nor-
malizing factors, Gaussian and non-Gaussian limiting fields obtained in
this paper are new or at least in a more general form. The Green functions
of generalized kinetic equations as well as the corresponding spectral
representation are also new.

The paper is organized as follows. Sections 2 and 3 provide prelimi-
naries on the fractional-in-space and in-time diffusion equations with
random initial conditions, including some new results concerning the Green
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functions of these equations. Section 4 describes the main results of this
paper including spectral representation, Gaussian and non-Gaussian
scaling laws. The proof of these results are given in Section 5.

2. FRACTIONAL KINETIC EQUATION

We consider the following fractional kinetic equation/fractional dif-
fusion equation

“
bu
“tb
=−m(I−D)c/2 (−D)a/2u, m > 0 (2.1)

subject to the initial condition

u(0, x)=u0(x), x ¥ Rn, (2.2)

where u=u(t, x), 0 < t [ T, x ¥ Rn, is the kinetic field and b ¥ (0, 1], c \ 0,
a > 0 are fractional parameters. We shall concentrate on the case of
random initial condition, that is,

u0(x)=g(x), x ¥ Rn, (2.3)

where g(x)=g(w, x), w ¥ W, x ¥ Rn, is a measurable random field defined
on a suitable complete probability space (W,A, P). Here, D is the
n-dimensional Laplace operator, and the operators −(I−D)c/2, c \ 0, and
(−D)a/2, a > 0, are interpreted as inverses of the Bessel and Riesz poten-
tials respectively (see Appendix B). Both Bessel and Riesz potentials are
considered to be defined in a weak sense, in frequency domain, in terms of
fractional Sobolev spaces.

The time derivative of order b ¥ (0, 1] is defined as follows:

“
bu
“tb
=˛
“u
“t
(t, x), if b=1,

(Db
t u)(t, x), if b ¥ (0, 1),

(2.4)

where

(Db
t u)(t, x)=

1
C(1−b)
5 “
“t

F
t

0
(t− y)−b u(y, x) dy−

u(0, x)
tb
6 , 0 < t [ T,

is the regularized fractional derivative or fractional derivative in the Caputo–
Djrbashian sense (see Caputo, (16) Djrbashian and Nersesian, (22) Kochu-
bei, (42) Djrbashian, (21) Podlubny, (60) or Appendix A). The idea of regular-
ization can be found in Caputo, (16, 17) Caputo and Mainardi, (18) Gorenflo
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and Mainardi. (36) Note that for c=0, b=1, a=2, Eq. (2.1) is the classical
linear diffusion equation or heat equation with random initial condition
(see Rosenblatt, (63) Anh and Leonenko, (6) and others).

In the non-stochastic situation the fractional-in-time diffusion equa-
tion, which formally corresponds to Eq. (2.1) with c=0, a=2, has
been studied by many authors. In particular, Schneider and Wyss, (71)

Schneider, (70) Fujita, (30) Prüss, (62) Engler (26) considered the fractional inte-
gro-differential equations or Volterra-type equations while Kochubei, (42)

Hilfer, (37) Kostin (44) investigated a Cauchy problem for fractional evolution
equations in Banach space with fractional derivatives. Mainardi (49–51) used
the fractional derivatives in the Caputo sense to solve the Cauchy problem
for the one-dimensional fractional-in-time diffusion equation (see also
Gorenflo and Mainardi (51)). The fractional-in-space diffusion equation,
which formally corresponds to Eq. (2.1) with b=1, c=0, 0 < a [ 2, was
first considered by Feller (29) and then many others (see Stroock (74) for
example) in the context of fractional diffusion leading to a study of
Markov processes or Lévy processes governed by stable distributions (see
also Uchaikin and Zolotarev (77)). Saichev and Zaslavski, (67) Kobelev et
al., (41) Metzler et al., (54) Zaslavski, (80) Gorenflo et al. (35) proposed the one-
dimensional fractional generalization of the diffusion equation incorporat-
ing fractional derivatives with respect to time and space coordinates. It was
introduced to describe anomalous kinetics of simple dynamical systems
with chaotic motion. Hilfer (37) introduced a two-parameter fractional-in-
time diffusion equation.

Hochberg and Orsingher, (38) Beghin et al. (9) considered higher-order
parabolic equations, which formally correspond to Eq. (2.1) with b=1,
c=0, n=1 and a=3, 4, ... They presented solutions of such equations in
the form of density functions of iterated Brownian motion (Hochberg and
Orsingher (38)) or Gaussian limiting behaviour of the rescaled solution of the
linear Korteweg–de Vries equation with random data (Beghin et al. (9)).

We shall extensively use the following entire function of order 1/b and
type 1:

Eb(z)=C
.

j=0

z j

C(bj+1)
, z ¥ C1, b > 0.

This function is known as the Mittag–Leffler function (see Erdély et al., (27)

pp. 206–212, or Djrbashian (21)). In particular, for real x \ 0, b > 0,

Eb(−x)=C
.

j=0

(−1) j x j

C(bj+1)
(2.5)
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is infinitely differentiable and completely monotonic if 0 < b < 1, that is,

(−1)k
dk

dxk
Eb(−x) \ 0, x \ 0, 0 < b < 1, k=0, 1, 2, ...

For real x \ 0 and b < 1,

Eb(−x)=
sin (pb)

pb
F
.

0

exp {−(xt)1/b} dt
t2+2t cos (pb)+1

. (2.6)

In particular, for x \ 0,

E1(−x)=e−x, E1/2(−x)=ex
2 11− 2

`p
F
x

0
e−t

2
dt2 .

From (C.5) and (C.12) in Appendix C, we obtain the following asymptotic
expansion:

Eb(−x)=− C
N

k=1

(−1)k x−k

C(1−bk)
+O(|x|−N−1) (2.7)

as xQ., where b < 1 (see also Djrbashian, (21) p. 5). We shall recall some
important results on the Mittag–Leffler function (see Djrbashian and
Nersesian, (22) Theorems 5 and 6, Kochubei, (43) Podlubny, (60) or Engler, (26)

Appendix) in the following

Theorem 1. The function

u(t)=Eb(−atb)

is the unique solution in Lp(0, T), p \ 1, of the Cauchy problem for the
ordinary fractional equation

Dbu(t)+au(t)=0, u(0)=1, a > 0, (2.8)

where

Dbu(t)=(Dbu)(t)=(Rbu)(t)−
u(0)

C(1−b) tb
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and

(Rbu)(t)=
1

C(1−b)
d
dt

F
t

0

u(y) dy
(t−y)b

is the Riemann–Liouville fractional derivative (see Appendix A).

Let S=S(Rn) be the Schwartz space of rapidly decreasing C.(Rn)-
functions with the dual S −=S −(Rn), which is the space of tempered dis-
tributions (see, for example, Dautray and Lions, (19) Vol. 2, Appendix).
Consider now Eq. (2.1) subject to the initial condition

u0(x)=d(x) ¥S −, x ¥ Rn, (2.9)

where d(x) is the Dirac delta-function. We shall denote by û=Fx[u] the
Fourier transform of a distribution u ¥S − with respect to the space vari-
able x ¥ Rn. In particular, let Ĝ=Ĝ(t, t), t > 0, t ¥ Rn being the dual vari-
able of x ¥ Rn, be the Fourier transform of the fundamental solution (i.e.,
the Green function) of the Cauchy problem (2.1) and (2.9). By the Fourier
transform with respect to x, (2.1) and (2.9) is equivalent (see Appendix B)
to the Cauchy problem

(Db
t Ĝ)(t, t)=−m |t|a (1+|t|2)c/2 Ĝ, Ĝ(0, t)=1. (2.10)

To solve (2.10) we associate with it an ordinary fractional differential
equation (2.8) depending on the parameter

a=m |t|a (1+|t|2)c/2 \ 0.

Using standard arguments (see, for example, Dautray and Lions, (19) Vol. 5,
pp. 8–15) and Theorem 1 we arrive at the following

Theorem 2. The Cauchy problem (2.10) has a unique solution given
by

Ĝ(t, t)=Eb(−mtb |t|a (1+|t|2)c/2), (2.11)

where Eb(−x), x \ 0, is the Mittag–Leffler function (2.5) of the negative
real argument.

Moreover, for u0(x) ¥S (or u0(x) ¥S − and has a compact support)
the initial value problem (2.1) and (2.9) has the unique solution

u(t, x)=F
R
n
G(t, x−y) u0(y) dy, (2.12)

where the Green function G(t, x), 0 < t [ T, x ¥ Rn, satisfies (2.11).
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In the next section, we present some explicit expressions for the fun-
damental solution G of the initial-value problem (2.1) and (2.9) in terms of
H-functions (see Appendix C). For certain special values of the fractional
parameters a, b and c, the known results of Schneider and Wyss (71) and
Mainardi (50) are recovered. For a fuller collection of explicit solutions of
pseudo-differential equations in terms of H-functions, see Hilfer (37).

3. THE GREEN FUNCTION

Let G(t, x), 0 < t [ T, x ¥ Rn, be the Green function of the fractional
kinetic equation (2.1) whose Fourier transform is given by (2.11). The
inverse Fourier transform can be written as

G(t, x)=(2p)−n F
R
n
e iOl, xPEb(−mtb |l|a (1+|l|2 )c/2) dl. (3.1)

For a > 0, b ¥ (0, 1] and c \ 0 such that

Eb(−mtb |l|a (1+|l|2)c/2) ¥ L1(Rn), (3.2)

the Green function

G(t, x) ¥ L1(Rn). (3.3)

Clearly, the inverse Fourier transform (3.1) is rotation invariant (in l) and
the function (2.11) is rotation invariant in t. Thus, the inverse Fourier
transform (3.1) can be represented by the Hankel method as

G(t, x)=
(2p)−n/2

|x| (n−2)/2
F
.

0
rn/2J(n−2)/2(|x| r) Eb(−ra(1+r2)c/2 tbm) dr, (3.4)

where Jn(z) is the Bessel function of the first kind of order n (see (C.14) in
Appendix C). The Hankel transform (3.4) exists (see, for example, Theorem
1 of Dautray and Lions, (19) Vol. 2, p. 48) for c \ 0, b ¥ (0, 1], a > 0 such
that

r (n/2)−(1/2)Eb(−ra(1+r2)c/2 tbm) ¥ L1(0,.). (3.5)

From (2.7) we obtain that for a fixed t ¥ (0, T] the condition (3.2) holds for
every b ¥ (0, 1] if a+c > n, while the condition (3.5) is satisfied for
a+c > (n+1)/2. From these ranges we see the important role of the
parameter c in Eq. (2.1).
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Remark 1. In fact, (3.1) and (3.4) hold for broader ranges of a, b
and c if we are able to prove that G(t, · ) ¥ L1(Rn), in which case, we may
compute the Fourier transform of G(t, · ) by the Hankel method via the
same integral formula. In this case, no problem arises. Otherwise, we may
interpret the Hankel transform (3.4) as an L2((0,.), rdr) isometry for
a+c > n/2. An analysis of (3.1) or (3.4) is possible also within the
framework of Schwartz distributions.

Remark 2. The Green function (3.1) or (3.4) of the fractional diffu-
sion equation (2.1) provides the most general form to our knowledge. For
the special values b=1 and/or a=2 the known results can be recovered.

Let us consider the initial-value problem (2.1) and (2.9) with b=1
(fractional-in-space kinetic equation with factorization of the Laplacian).
In this case the Mittag–Leffler function E1(−x)=e−x, x \ 0, and from
(3.1) we obtain an explicit expression of the Green function (see Anh and
Leonenko (7)) as

G(t, x)=p(t, x; a, c, m)

=(2p)−n F
R
n
exp {iOl, xP−mt |l|a (1+|l|2)c/2} dl, a > 0, c \ 0.

(3.6)

For c=0, a=2 the Green function (3.6) reduces to the n-dimensional iso-
tropic Gaussian density

p(t, x; 0, 2, m)=G(t, x)=(4pmt)−n/2 exp 3 −|x|
2

4mt
4 . (3.7)

For c=0, a=1,

p(t, x; 0, 1, m)=C 1n+1
2
2 p−(n+1)/2mt[(mt)2+|x|2]−(n+1)/2

is the density function of the n-dimensional symmetric Cauchy distribution,
while for c=0, a ¥ (0, 2],

p 1 t
2
, x; 0, a, 12=(2p)−n F

R
n
e iOl, xP−(t/2) |l|

a

dl (3.8)

is the density function of the n−dimensional symmetric stable distribution.
For a general discussion of stable distributions and processes, see
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Samorodnitsky and Taqqu, (69) Uchaikin and Zolotarev. (77) Note that for
a > 2 the function (3.8) may become negative for some value of x.

It is known (see, for example, Andrews et al., (3) p. 221) that

F
.

0
Jn(at) tn+1e−p

2t2dt=
an

(2p2)n+1
e−a

2/4p2, Re n > −1. (3.9)

Combining (2.6), (3.4) and (3.9) we get the following elegant expression for
the Green function:

G(t, x)=
sin(pb)

2p3/2bm1/2bt1/2
F
.

0

exp{− |x|2/4tm1/bu1/b} du
u1/2b(u2+2u cos(pb)+1)

,

which holds for n=1, 0 < b < 1, a=2b ¥ (0, 2), c=0. For c=0, we are
able to give a new explicit expression for the Green function (3.4) in terms
of H-functions (see Appendix C). Applying (C.18) of Appendix C to (3.4)
yields

G(t, x)=
p−n/2

|x|n
H2, 12, 31

|x|a

2atbm
: (1, 1) (1, b)

(n/2, a/2) (1, 1) (1, a/2)
2

=
p−n/2

|x|n
H1, 23, 2 1

2atbm
|x|a
: (1−(n/2), a/2) (0, 1) (0, a/2)

(0, 1) (0, b)
2 , (3.10)

where H2, 12, 3 and H1, 23, 2 are H-functions defined by (C.1) or (C.3) of Appendix
C. From (C.19) and (C.2a–C.2h)) we obtain that (3.10) holds at least for

b ¥ (0, 1],min(n, 2, a) > (n−1)/2, |x| ] 0. (3.11)

Remark 3. From the equation (10.1.1) of Srivastava et al. (72) we
obtain that for n=1 the function q(u)=aG(t, u), u > 0, is a density func-
tion for b ¥ (0, 2], 0 < a [ 2, b < a. It means that in this region
G(t, x) ¥ L1(R1) and G(t, x) \ 0 for all n \ 1.

If we apply the relation (C.5) in Appendix C with m=1, n=2, p=3,
q=2, sk=−k, k=0, 1, 2, ..., B(s)=C((n−as)/2) C(1−s), C(s)=
C(1−bs), D(s)=C(as/2) to (3.10) we get the following series representa-
tion:

G(t, x)=
p−n/2

|x|n
C
.

k=0
(−1)k 1 |x|

a

2atbm
2−k C((n+ak)/2)

C(1+bk) C(−ak/2)
, b > a.

(3.12)
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It should be noted that formula (3.12) was first obtained by Gorenflo et
al. (35) for the case n=1 by a different method.

In the case b < a we obtain from (C.6) the following representation:

G(t, x)=
p−n/2

|x|n
C
.

k=0
(−1)k 1 |x|

a

2atb
2k+1 C(n−a−ak/2)

C(1−b−bk) C(a+ak/2)
(3.13)

This formula again was obtained by Gorenflo et al. (35) in the case
n=1. Moreover, for n=1, Gorenflo et al. (35) note that if b=a the series
representation is given by (3.13) if 0 < t < |x|, and by (3.12) if 0 < |x| < t.
Gorenflo et al. (35) found that if b=a, n=1 both formulae (3.13) and (3.12)
can be simplified to a fractional Cauchy kernel:

G(t, x)=
1
p

|x|a−1 ta sin
ap

2

t2a+2 |x|a ta cos
ap

2
+|x|2a

.

It should be noted that for b=a=1, n=1 the above kernel becomes the
well-known Cauchy kernel:

G(t, x)=
1
p

t
t2+x2

.

We shall see below that for the special values of b=1 and/or a=2
the known results can be recovered. For example, if c=0, a=2, b ¥ (0, 1],
the Green function (3.10) is reduced to

G(t, x)=
p−n/2

|x|n
H2, 12, 3 1

|x|2

4tbm
: (1, 1) (1, b)
(n/2, 1) (1, 1) (1, 1)

2 . (3.14)

Applying (C.7) to (3.14) yields

G(t, x)=
p−n/2

|x|n
H2, 01, 2 1

|x|2

4tbm
: (1, b)
(n/2, 1) (1, 1)

2 . (3.15)

Applying (C.9) with c=1/b to (3.14) we get, for m=1,

G(t, x)=
p−n/2

b|x|n
H2, 01, 2 1

|x|2/b

22/bt
: (1, 1)
(n/2, 1/b) (1, 1/b)

2 . (3.16)

The Green function (3.16) is exactly the Green function (3.4) of Schneider
and Wyss (see ref. 71), while the formula (3.15) is the Green function of
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Kochubei ( (42)). For b=1, (3.14), (3.15) and (3.16) reduce to (3.7) by using
(C.10). Moreover, applying (C.11) with s=−n/2 to (3.15) we get

G(t, x)=(4ptb)−n/2H2, 01, 2 1
|x|2

4t2
: (1−(bn)/2, b)

(0, 1) (1−(n/2), 1)
2 . (3.17)

The Green functions (3.15), (3.16) and (3.17) have exponential behaviour as
|x|Q. according to (C.8) and G(t, · ) ¥ L1(Rn). This is a probability
density in Rn for every b ¥ (0, 1]. Hilfer (37) considered a two-parameter
fractional-in-time diffusion equation and obtained a fundamental solution
in terms of H-functions.

The Green function (3.17) coincides with the Green function (1.22) of
Schneider. (70) This Green function can be written as

G(t, x)=(4ptb)−n/2 gb(|x|2 t−b
1
4)

=F
.

0
G1(utb, x) zb(u) du, (3.18)

where G1(t, x) is the Green function (3.7) of the ordinary diffusion equation

gb(u)=F
.

0
zb(s) e−u/ss−n/2ds, u > 0,

zb(u)=
1
b
u−1−(1/b)rb(u−1/b)=H

1, 0
1, 1
1u : (1−b, b)

(0, 1)
2

(3.19)

and rb(u) is the one-sided stable probability density with Laplace trans-
form (see (C.12))

F
.

0
e−ptrb(t) dt=exp {−pb}, Re p > 0.

Remark 4. The function (3.19) itself is a probability density with
Laplace transform Eb(−t), t \ 0 (see Schneider, (70) for example). The
behaviour of gb(u) for small u can be obtained from (C.4) or (C.5) leading
to gb(u) ’ [C(1/2)/C(1−(b/2))] u0, n=1; gb(u) ’ [−1/C(1−b)] log u,
n=2; gb(u) ’ [C(n/2−1)/C(1−b)] u1−(n/2), n \ 3. Its asymptotic behav-
iour for large u > 0 is determined by (C.6) and reads

gb(u) ’ Cu−s exp {−cuy} with C=(2−b)−1/2 bn,

where s=n(1−b)/[2(2−b)], y=(2−b)−1, n=[b(n+2)−2]/(2(2−b)).
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Remark 5. Kochubei (42) presented the singular properties of the
fundamental solution (3.15) with estimates both in t ¥ (0, T] and x ¥ Rn.
Let ci > 0 be positive constants. Then for t−b |x|2 < 1, x ] 0, we have
the following estimates: |G(t, x)| [ c1t−b/2, n=1; |G(t, x)| [ c2t−b[1+
ln (t−b |x|2)], n=2; |G(t, x)| [ c3t−b |x|−n+2, n \ 3. For t−b |x|2 \ 1, |G(t, x)|
[ c4t−bn/2 exp {−c5t−b/(2−b) |x|2/(2−b)}. Kochubei (42) proved that under some
conditions (see (1)–(3) below) the function

u(t, x)=F
R
n
G(t, x−y) u0(y) dy (3.20)

is the classical solution of the initial-value problem (2.1) and (2.9) with
a=0, c=2, b ¥ (0, 1], that is,

(i) u(t, · ) ¥ C2(Rn);

(ii) u( · , x) ¥ C(0, T);

(iii) there exists a fractional integral (I1−bu)(t, x) ¥ C1(0, T), where

(I1−bu)(t, x)=
1

C(1−b)
F
t

0
(t−y)−b u(x, y) dy;

(iv) the function (3.20) satisfies (2.1) and (2.9).

Moreover

|u(t, x)| [ c6exp {h |x|2/(2−b)}, 0 < h < m0T−b/(2−b),

m0=(2−b) bb/(2−b)2−b/(2−b);

u(t, x) ¥Hb+ln (0, T) if 0 < l+b < 1, b+l < n, where Hb+ln (0, T) is the class
of functions f(t), t ¥ (0, T) such that tnf(t) satisfies the Hölder condition
of order b+l. The conditions for Kochubei’s theorem are the following:

(1) u0(x), x ¥ Rn is continuous;

(2) u0(x) [ c7exp {h |x|2/(2−b)}, 0 < h < m0T−b/(2−b), and

(3) u0(x) locally satisfies the Hölder condition if n > 1.

Some further results on fractional evolution equations can be found in
Hilfer. (37)

Remark 6. Mainardi (50) (see also Podlubny (60) or Gorenflo et al. (35))
considered the initial-value problem (2.1) and (2.9) for n=1, c=0, a=2,
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where the fractional-in-time derivative of order b ¥ (0, 2) is interpreted in
the Caputo–Djrbashian sense (see Caputo, (16, 17) Mainardi (50) or Anh and
Leonenko (8, 7)). He presented the solution of the initial-value problem in the
form of (3.20) with the Green function

G(t, x)=
1

2tb/2`m
M 1 |x|
tb/2`m

;
b

2
2 , 0 < b < 2, (3.21)

where the function

M(u; n)=C
.

j=0

(−1) ju j

j!C(− nj+1− n)
=W(−u; − n, 1− n), u \ 0, 0 < n < 1,

and the entire function of order 1/(1+l)

W(z; l, m)=Jl
m−1(z)=H

1, 0
0, 2
1z : −
(0, 1)(1−m, l)

2 , z ¥ C 1,

l > −1, m > 0 is known as Wright’s generalized Bessel function (see (C.14)
for its definition). The Fourier transform of (3.21) is of the form (2.11) with
c=0, a=2, n=1 (see Anh and Leonenko (8) for more details). In particu-
lar,M(u; 1/2)=exp {−u2/4}, andM(u; 1/3) can be expressed in terms of
Airy function with positive argument.

Remark 7. Saichev and Zaslavski, (67) Zaslavski, (80) Hilfer (37) and
Kobelev et al. (41) presented some different forms of the Green functions of
fractional-in-time and/or in-space one-dimensional diffusion equations.
They use a different definition of fractional derivatives and their regular-
izations.

Remark 8. The Green functions (3.4) or (3.5) of the fractional
kinetic equation (2.1) are radial or rotation-invariant, i.e., G(t, x)=
G̃(t, |x|), t > 0, x ¥ Rn. In general, the fundamental solutions of higher-
order heat-type equations can be not only signed but also asymmetric (see
Fujita, (30) Hochberg and Orsingher (38) or Beghin et al. (9) and the references
therein). For example, the fundamental solution of the Airy equation or
linear Korteweg–de Vries equation

“u
“t
=−

“
3u
“x3
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is of the form

u(t, x)=
1

`p

1
3
`3t

Ai 1 x
3
`3t
2 , t > 0, x ¥ R1, (3.22)

where the Airy function of the first kind (see Bleistein and Handelsman (12))

Ai(x)=
1

`p
F
.

cos 1ax+a3

3
2 dx, x ¥ R1

is asymmetric and signed. Thus the fundamental solution (3.22) has the
following asymptotic behaviour:

u(t, x) ’
x−1/4t−1/4

2`p 4
`3

exp 3 − 2

3`3
x3/2t−1/24 , xQ+.

and

u(t, x) ’
|x|−1/4 t−1/4

`p 4
`3

cos 3 2
3`3

|x|3/2 t−1/2−
p

4
4 , xQ −..

For any t > 0, u(t, x) converges to zero exponentially fast as xQ+. and
oscillating as xQ −.. Thus u(t, x) is asymmetric and signed. We note that
the fundamental solution (3.1) of the second-order equation is non-negative
while that of the fourth-order equation is signed but symmetric. Feller, (29)

Fujita, (30) Uchaikin and Zolotarev (77) considered the fractional equations
whose fundamental solutions are general densities of stable distributions
(not necessarily symmetric). The fundamental solutions u(t, x), t > 0,
x ¥ R1 of the higher-order heat-type equation

“u
“t
=(−1)m+1

“
2mu
“x2m
, m=2, 3, ...

have as their Fourier transforms exp {−t2mt} and, for t=1,

u(1, x)=F
R
1

1
2p

exp {ixt−t2m} dt=
1
2pm

C
.

j=0
(−1) j

C((2j+1)/2m)
C(2j+1)

x2j.

The function y(x)=2pu(1, x) satisfies the ordinary differential equation

d2m−1y
dx2m−1

−(−1)m
1
2m
xy=0.
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which is a special case of Turrittin’s equation

dny
dxn
−xny=0, n=0, 1, 2, ..., n ¥ C1

(see Kamimoto (40)).

4. SPECTRAL REPRESENTATION AND SCALING LAWS

In this section we discuss the spectral representation of some classes of
random fields which can be interpreted as mean-square solutions of frac-
tional-in-time and in-space kinetic equations (2.1) with random initial
condition (2.3). We obtain new Gaussian and non-Gaussian scenarios for
renormalized solutions of these equations.

Let g(x), x ¥ Rn, be a real measurable mean-square continuous
homogeneous (in the wide sense) random field with Eg(x)=0 and
covariance function

B(x)=cov(g(0), g(x))=F
R
n
cosOl, x−yP F(dl), (4.1)

where F is the spectral measure, that is, a bounded non-negative measure
on (Rn, B(Rn)), B(Rn) being the s-field of Borel sets of Rn. In view of
Karhunen’s theorem (see, for example, Gihman and Skorokhod (33)) there
exists a complex-valued orthogonally scattered random measure Z such
that for every x ¥ Rn, the random field itself has the spectral representation
(p− a.s.)

g(x)=F
R
n
e iOl, xPZ(dl), E |Z(A)|2=F(A), A ¥B(Rn). (4.2)

From (2.11), (2.12) and (4.2) we obtain the formal solution of the initial-
value problem (2.1) and (2.3) in the form of L2(W)-stochastic integral:

u(t, x)=F
R
n
g(y) G(t, x−y) dy

=F
R
n
e iOl, xPEb(−mtb |l|a(1+|l|2)c/2) Z(dl), (4.3)
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where Eb is the Mittag–Leffler function (2.5) and b ¥ (0, 1], a > 0, c \ 0 are
fractional parameters. In addition, by (2.4), (2.8) and (4.3),

Db
t u=−mF

R
n
e iOl, xP |l|a (1+|l|2)c/2 Eb(−mtb |l|a(1+|l|2)c/2) Z(dl)

=−m(I−D)c/2 (−D)a/2 u,

where the fractional derivatives in space are also interpreted in the mean-
square sense in the frequency domain (see Appendix B). Thus we can
interpret (4.3) as the mean-square or L2(W)-solution of the initial-value
problem (2.1) and (2.3).

The covariance function of the random field (4.3) is of the form

cov(u(t, x), u(s, y))

=F
R
n
e iOl, x−yPEb(−mtb |l|a (1+|l|2)c/2) Eb(−msb |l|a (1+|l|2)c/2) F(dl).

(4.4)

In particular for b=1 we obtain the following spectral representation of
the mean-square solutions of the fractional-in-space kinetic equation with
random data:

u(t, x)=F
R
n
exp {iOl, xP−mt |l|a (1+|l|2)c/2} Z(dl), (4.5)

while for b ¥ (0, 1], c=0, a=2, (4.3) reduces to

u(t, x)=F
R
n
exp {iOl, xP} Eb(−mtb |l|2) Z(dl). (4.6)

For b=1, c=0, a=2, both spectral representations (4.5) and (4.6) can be
written as

u(t, x)=F
R
n
e iOl, xP−mt |l|

2
Z(dl). (4.7)

Remark 9. Consider the initial-value problem (2.1) and (2.3) with
b ¥ (0, 1], c=0, a=2 on the set (t, x) ¥ (0, T]×Rn. Suppose that sample
paths of the random field g(x), x ¥ Rn satisfy conditions (1)–(3) of Remark
5. Then there exists a classical solution of the initial-value problem (2.1)
and (2.3) (see Remark 5) and (4.3) satisfies (2.1) with probability one. An
interesting open problem is to generalize this result to the general equation
(2.1).
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Remark 10. If g(x), x ¥ Rn, is a homogeneous Gaussian field with
spectral representation (4.2), then u(t, x), t > 0, x ¥ Rn, is a homogeneous
(in space) Gaussian field with spectral representation (4.3). If the field g is
subordinate to a Gaussian field (see Dobrushin (23)), then the field (4.3) can
be written as a series of Wiener–Itô multiple integrals with corresponding
transfer functions. These transfer functions express the non-Gaussian
structure of the field (4.3). In particular, it is possible to calculate the
higher-order spectra using the diagram formalism and technique of
Terdik. (76) We address these problems in a separate paper.

An open area of investigation is to consider the rescaled solutions of
the fractional kinetic equations (2.1) with random initial conditions and/or
random potential. For an exposition of the heat equation with random
potential in terms of Wiener–Itô integrals, see Nualard and Zakai (56) and
Holden et al., (39) for example.

In this paper we shall restrict ourselves to finding the limiting distri-
butions of the rescaled solutions of the initial-value problem (2.1) and (2.3)
in the case where the (non-Gaussian) random field g(x)=h(t(x)), x ¥ Rn,
is a local functional of a homogeneous isotropic Gaussian field t(x),
x ¥ Rn, such that E(h2(t(0))) <.. The underlying field t(x), x ¥ Rn, is
assumed to satisfy the following conditions:

A. The field t(x), x ¥ Rn, is a real measurable separable mean-square
continuous homogeneous isotropic Gaussian random field with Et(x)=0
and covariance function of the form

R(x)=cov(t(0), t(x))=(1+|x|2)−o/2, 0 < o < n, x ¥ Rn. (4.8)

Observe that in this case

F
R
n
B(x) dx=.

and we have a random field with long-range dependence.

Remark 11. Most of the papers devoted to limit theorems for
random fields with LRD have used the covariance function of the form
R(x)=L(|x|)/|x|o, 0 < o < n, x ¥ Rn, where L is a slowly varying function
for large values of its argument with some additional properties. Never-
theless, for continuous-parameter random fields, it is not easy to find exact
examples of non-negative definite continuous functions of the above form.
Note that the class of covariance functions of real-valued homogeneous
isotropic random fields coincides with the class of characteristic functions
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of symmetric probability distributions. From the theory of characteristic
functions we are currently able to present only example (4.8) and the
covariance function

R1(x)=(1+|x|o)−1, x ¥ Rn, (4.9)

where o ¥ (0, 1) for n=1, and o ¥ (0, 2) for n \ 2. The function (4.8) is
known as the Fourier transform of the Bessel potential (see Appendix B) or
characteristic function of symmetric Bessel distributions (see Oberhettin-
ger, (57) p. 156, or Fang et al., (28) p. 69). The function (4.9) is known as the
characteristic function of the Linnik distribution (see Anderson (2)or
Ostrovskii (59)). In this paper we consider the covariance function (4.8). In
principle, our method is applicable to the covariance function (4.9) as well
(see Anh and Loenenko (7) for details).

Under condition A, the covariance function (4.8) has the following
spectral representation:

R(x)=F
R
n
e iOl, xPfo(l) dl, (4.10)

while the field itself can be represented as

t(x)=F
R
n
e iOl, xPf1/2o (l) W(dl), (4.11)

where W is the complex-valued white noise random measure on
(Rn, B(Rn)) such that

E |W(D)|2=|D|, D ¥B(Rn),

for any D with finite Lebesgue measure |D|. The spectral density fo(l),
l ¥ Rn has the following exact form (see, for example, Donoghue, (25)

p. 293):

fo(l)=f̃o(|l|)=c(n, o) K(n−o)/2(|l|) |l| (o−n)/2, (4.12)

where

c(n, o)=5pn/22 (o−n)/2C 1o
2
26−1
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and

Kn(z)=
1
2
F
.

0
sn−1e−

1
2 z (s+

1
s)ds=

1
2
H2, 00, 2 1

z2

4
: −
(n/2, 1)(− n/2, 1)

2 (4.13)

is the modified Bessel function of the third kind of order n (see, for
example, Watson (78)). We note that

Kn(z) ’ C(n) 2n−1z−n, z a 0, n > 0 (4.14)

and for a large value of z the following approximation holds:

Kn(z)==
p

2
e−zz−1/2 11−4n

2−1
8z
+· · · 2 . (4.15)

Using (4.12)–(4.15) we obtain the following Tauberian representation (see
Donoghue, (25) p. 295):

fo(l)=c1(n, o) |l|o−n (1−h(|l|)), 0 < o < n, l ¥ Rn, (4.16)

where h(|l|)Q 0 as |l|Q 0, and

c1(n, o)=C 1n−o

2
2;52opn/2C 1o

2
26 (4.17)

is a Tauberian constant (see Leonenko, (45) p. 67).

Remark 12. The correlation function (4.9) has the spectral repre-
sentation (4.10) with spectral density

f1o(l)=
sin (po/2)
2 (n−2)/2p (n+2)/2

|l| (2−n)/2 F
.

0
K(n−2)/2(|l| u)

u (n/2)+odu
|1+uoe ipo/2|2

, l ¥ Rn

for which we can derive the Tauberian representation (4.16), but its
asymptotic behaviour at the origin depends on the arithmetic nature of the
parameter o ¥ (0, 2) (see Ostrovskii (59)).

From (4.16) we observe that fo(l) ‘. as |l|Q 0 ; thus we have a field
with singular spectrum.

B. The function h: R1Q R1 is such that

F
R
1
h2(u) j(u) du <.,
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where

j(u)=
1

`2p
e−u

2/2, u ¥ R1

is the standard Gaussian density.
The (non-linear) function h of condition B may be expanded in the

series

h(u)=C
.

k=0

Ck
k!
Hk(u), Ck=F

R
1
h(u) j(u) Hk(u) du, (4.18)

of orthogonal Chebyshev–Hermite polynomials

Hk(u)=(−1)k [j(u)]−1
dk

duk
j(u), k=0, 1, 2, ...

C. There exists an integer m \ 1 such that

C0=·· ·=Cm−1=0, Cm ] 0.

The integer m \ 1 will be called the Hermitian rank of the function h
(see, for example, Taqqu (75)).

D. Suppose that the Green function G(t, · ) ¥ L1(Rn).

Remark 13. For a discussion of condition D in terms of fractional
parameters, see Section 3. For example, condition D holds if a+c > n,
b ¥ (0, 1].

Our main result is the following

Theorem 3. Let u(t, x), 0 < t [ T, x ¥ Rn, be a random field of the
form (4.3), where a > 0, b ¥ (0, 1], c \ 0 are fractional parameters of the
fractional kinetic equation (2.1) with the initial condition field g(x)=
h(t(x)), x ¥ Rn, where the non-random function h and random field t(x),
x ¥ Rn, satisfy conditions A, B and C with

o <min (2a, n)/m,

m \ 1 being the Hermitian rank of the function h. Suppose that condition
D holds. Then the finite-dimensional distributions of the random field

Ue(t, x)=
1

emob/(2a)
u 1 t

e
,
x

eb/a
2 , 0 < t [ T, x ¥ Rn, (4.19)
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converge weakly as e Q 0 to the finite-dimensional distributions of the
random field

Um(t, x)=
Cm
m!
cm/21 (n, o) F

Œ

R
nm

e iOx, l1+· · ·+lmP

(|l1| · · · |lm|) (n−o)/2
Eb(−mtb|l1+·· ·+lm|a)

×W(dl1)...W(dlm), 0 < t [ T, x ¥ Rn, (4.20)

where Eb is the Mittag–Leffler function (2.5), W is the complex Gaussian
white noise random measure defined by (4.11) and c1(n, o) is a constant
defined in (4.17).

We shall give the proof in Section 5. Here > − ... is multiple Wiener–Itô
integral with respect to a Gaussian white noise measure. For definition
and properties of these integrals, see Taqqu, (75) Major, (53) for example. We
should note that the diagonal hyperplanes li=±lj, i, j=1, ..., m, i ] j, are
excluded from the domain of integration. The random field (4.20) is
homogeneous in x ¥ Rn, that is,

EUm(t, x) Um(s, y)=
C2m
m!
cm(n, o) F

R
nm

e iOx−y, l1+· · ·+lmP

(|l1|...|lm|)n−o
Eb(−mtb |l1+· · ·+lm|a)

×Eb(−msb |l1+·· ·+lm|a) dl1...dlm. (4.21)

It is easy to see that EU2(t, x) <. if o <min (2a, n)/m (see (3.3)).
Note that Theorem 3 reduces to the result of Leonenko and

Woyczynski (47) for n=1, b=1, c=0, a=2, to the result of Anh and Leo-
nenko (6) for n \ 1, b=1, c=0, a=2, to the result of Anh and Leonenko (8)

for n=1, b ¥ (0, 1], c=0, a=2. The special cases n \ 1, b ¥ (0, 1], c=0,
a=2, and n \ 1, b=1, c \ 0, a > 0 of Theorem 3 were considered in Anh
and Leonenko (7).

We observe from (4.20) that U1(t, x), t > 0, x ¥ Rn, is a homogeneous
(in x) Gaussian random field with covariance function (4.21) for m=1 and
spectral density

g(l)=c2E
2
b(−mtb |l|a) |l|o−n, l ¥ Rn, (4.22)

where

c2=C
2
1c1(n, o).

The spectral density (4.22) behaves as

c2|l|o−n, o ¥ (0, min (2a, n)), (4.23)
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as |l|Q 0. Hence the Gaussian random field U1(t, x), t > 0, x ¥ Rn, which
can be considered as an approximation to the solution of the fractional
kinetic equation with random singular data, displays LRD.

Applying (2.7) to (4.22) yields

g(l)=
c2

mtb
1

|l|n+2a−o
+O 1 1

|l|n+2a−o+1
2 (4.24)

as |l|Q.. The component 1/|l|n+2a−o indicates the second-order intermit-
tency (see Anh et al. (5)). The component t−b indicates that the relaxation
function is non-exponential.

The random fields Um(t, x), m \ 2, have a non-Gaussian structure. In
principle, it is possible to calculate the higher-order spectral densities of
these fields based on the diagram formalism (see Dobrushin (23)) and the
special technique of Terdik ( (76)). These higher-order spectral densities of
non-Gaussian fields Um(t, x), m \ 2, also have singularities at frequency
zero (and on the diagonals li=−lj, i, j=1, ..., m) and intermittency-type
behaviour at infinity. We address these problems in a separate paper.

The above discussion shows that random fields Um, defined in (4.20),
which can be considered via Theorem 3 as approximations to the solutions
of the fractional kinetic equation (2.1) with singular data, can be used as
models of physical phenomena with important features such as non-
Gaussian marginal distributions, LRD, intermittency and non-exponential
relaxation simultaneously. Moreover the explicit form of the spectral den-
sities such as (4.22) leads to suitable methods for statistical estimation of
the parameters of these random fields in the frequency domain (see
Leonenko (45) or Leonenko and Woyczynski, (48) among others) and for their
simulation.

5. PROOF OF THE MAIN RESULT

Under the conditions of Theorem 3, we have the following Hermite
expansion in L2(W):

u(t, x)=F
R
n
G(t, x−y) h(t(y)) dy= C

.

k=m

Ck
k!

nk(t, x), (5.1)
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where by Itô’s formula

nk(t, x)=F
R
n
G(t, x−y) Hk(t(y)) dy

=F
Œ

R
nm
e iOx, l1+· · ·+lmPEb(−mtb |l1+·· ·+lm|a (1+|l1+·· ·+lm|2)c/2)

×D
m

j=1
f1/2o (lj) W(dl1)...W(dlm), (5.2)

where > − means Wiener–Itô integral.
Therefore

Ue(t, x)=
1

emob/2a
u 1 t

e
,
x

eb/a
2=zm, e(t, x)+Re, (5.3)

where by the scaling property of Gaussian white noise (W(adl)=d

an/2W(dl), where=d stands for equality of distributions) we have

zm, e(t, x)=
(Cm/m!)
emob/(2a)

nm 1
t
e
,
x

eb/a
2

=
(Cm/m!)
emob/(2a)

F
Œ

R
nm
e iOxe

−b/a, l1+· · ·+lmPEb(−m(t/e)b |l1+·· ·+lm|a

×(1+|l1+·· ·+lm|2)c/2)

×D
m

j=1
f1/2o (l) W(dl1)...W(dlm)

=d
(Cm/m!)
emob/(2a)

F
Œ

R
nm
e iOx, l1+· · ·+lmPEb(−m(t/e)b |l1+·· ·+lm|a

× eb(1+e2b/a |l1+·· ·+lm|2)c/2)

×D
m

j=1
f1/2o (lje

b/a) emnb/(2a)W(dl1)...W(dlm)
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=
Cm
m!

F
Œ

R
nm
e iOx, l1+· · ·+lmPEb(−mtb |l1+·· ·+lm|a

×(1+e2b/a |l1+·· ·+lm|2)c/2) c
m/2
1 (n, o)

×3D
m

j=1
|lj| (o−n)/243D

m

j=1
(1−h(|lj| eb/a))4W(dl1)...W(dlm),

(5.4)

where h(|l|) is defined in (4.16).
We shall prove that

De=E |zm, e(t, x)−Um(t, e)|2Q 0, om <min (2a, n), (5.5)

and

varRe=
1

emob/(2a)
var C

.

k=m

Ck
k!

nk 1
t
e
,
x

eb/a
2Q 0 (5.6)

as e Q 0. Then, by Slutsky’s argument, Um, e(t, x) converges in distribution
to Um(t, x) and the statement of Theorem 3 can be obtained by the Cramer–
Wold argument.

From (5.4) and (4.20) we have

De [
C2m
m!
cm1 (n, o) F

R
nm

|e iOx, l1+· · ·+lmPEb(−mtb |l1+·· ·+lm|a)|2

(|l1+·· ·+lm|)n−o

×Qe(l1, ..., .lm) dl1...dlm, (5.7)

where

Qe(l1, ..., .lm)=Pm
j=1(1−hj(|lj| eb/a)) E

−2
b (−mtb|l1+·· ·+lm|a)

×E2b(−mtb |l1+·· ·+lm|a (1+eb/a |l1+·· ·+lm|2)c/2)−1.

Using the property of complete monotonicity of Mittag–Leffler function Eb
with b < 1 and (4.12), (4.14), (4.15) and (4.16) it follows that Qe(l1, ..., .lm)
is a bounded function and limeQ 0 Qe(l1, ..., .lm)=0. Then by the
dominated convergence theorem, we get from (5.7) limeQ 0 De=0. Note that
from (2.7) it follows that

F
R
nm

|e iOx, l1+· · ·+lmPEb(−mtb |l1+·· ·+lm|2)|2

(|l1+·· ·+lm|)n−o
dl1...dlm <.,

for o <min (2a, n)/m. Thus, (5.5) holds.
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Let us now prove (5.6). It is well known that

EHk(t(x)) Hm(t(y))=m!d
m
k[R(x)]

m, (5.8)

where R is defined by (4.8) and dmk is the Kronecker symbol. Using (5.8) we
get

var C
.

k=m

Ck
k!

nk 1
t
e
,
x

eb/a
2 [ Am+1(t, x) C

k \ m+1

C2k
k!
, (5.9)

where

Am+1, e(t, x)=F
R
n
F
R
n
:G 1 t

e
,
x

eb/a
−y12: :G 1

t
e
,
x

eb/a
−y22: Rm+1(y1−y2) dy1 dy2

=F
u(e−2/a)

F
u(e−2/a)

:G 1 t
e
,
x

eb/a
−y12: :G 1

t
e
,
x

eb/a
−y22:

×Rm+1(y1−y2) dy1dy2+We(t, x)

=A −m+1, e+We, (5.10)

and

u(r)={x ¥ Rn : |x|0 < r}, |x|0=max {|x1|, ..., |xn|}.

Note that

G 1 t
e
,
x

eb/a
2=(2p)−n enb/a F

R
n
e iOl, x−ye

b/aPEb(−mtb |l|a (1+e2b/a |l|2)c/2) dl.

(5.11)

For any b > 0 there exists U > 0 such that R(y1−y2) < b if |y1−y2|0 > U.
Now, let

D1={y1 ¥ u(e−2/a), y2 ¥ u(e−2/a) : |y1−y2| < U},

D2=u(e−2/a)× u(e−2/a)0D1,

D3={zi=x−yieb/a, yi ¥ u(e−2/a), i=1.2 : |z1−z2|0 > Ueb/a}.
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Then from (5.10) and (5.11) we get

A −m+1, e=F
D1

F :G 1 t
e
,
x

eb/a
−y12: :G 1

t
e
,
x

eb/a
−y22: dy1dy2

+b F
D2

F :G 1 t
e
,
x

eb/a
−y12: :G 1

t
e
,
x

eb/a
−y22: Rm(y1−y2) dy1dy2

[ e2nb/ak1(e)+b F
D3

F :(2p)−n F
R
n
e iOl, x−z1P

×Eb(−mtb |l|a (1+e2b/a |l|2)c/2) dl:

× :(2p)−n F
R
n
e iOl, x−z2PEb(−mtb |l −|a (1+e2b/a |l −|2)c/2) dl −:

×
emb/a

|e2b/a |z1−z2|2|mo/2
dz1dz2

[ e2nb/ak1(e)+bemob/ak2(e), (5.12)

where, by the dominated convergence theorem, limeQ 0 ki(e)=Ki, Ki,
i=1, 2, being positive constants. From (5.11) we obtain

A −m+1/emob/a [ k1(e) e (b/a)(2n−mo)+bk2(e) (5.13)

The right-hand side of (5.13) tends to zero as e Q 0 since om < 2n and b > 0
can be chosen arbitrary small.

Making again some change of variables we can prove that

We/emob/aQ 0, e Q 0. (5.14)

From (5.9)–(5.14) we obtain (5.6). The proof of Theorem 3 is then
completed.

A. CAPUTO–DJRBASHIAN’S REGULARIZED FRACTIONAL

DERIVATIVE

This appendix is based on Caputo, (16) Djrbashian and Nersesian (22) and
Djrbashain (ref. 21, Chapter 10), Podlubny, (60) Butzer and Westphal. (15) It
should be mentioned that Caputo and Djrbashian independently developed
the concept of regularized fractional derivative without naming it explicitly.
Later, the concept was re-discovered by several authors.
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Let f(t) ¥ L1(0, T) be an arbitrary function. The Riemann–Liouville
fractional integral of order b > 0 is defined as

R−bf(t)=
1

C(b)
F
t

0
(t−y)b−1 f(y) dy, 0 < y < T. (A.1)

For any b > 0 the functions R−bf(t) ¥ L1(0, T) and defined almost every-
where. Moreover

lim
bQ 0

R−bf(t)=f(y), t ¥ Ef,

where Ef is the set of those points t ¥ (0, T) for which the functions f(t)
and |f(t)| are both the derivatives of their primitives (the measure of
(0, T)0Ef is zero). For example

R−b{ta/C(1+a)}=ta+b/C(1+a+b), a > −1. (A.2)

Let f(t) ¥ L1(0, T) and let b1, b2 \ 0. Then

R−b2(R−b1f(t))=R−b2(R−b1f(t))=R−(b1+b2)f(t),

R−0f(t)=f(t). (A.3)

Assume b > 0 to be a given number and the integer p \ 1 to be defined by
the inequalities p−1 < b [ p. For f(t) ¥ L1(0, T) we introduce the function

Rbf(t)=
dp

dtp
{R−(p−b)f(t)}

which is called the Riemann–Liouville fractional derivative of order b > 0.
In particular, for p=1

Rbf(t)=
d
dt
{R−(1−b)f(t)}, 0 < b [ 1.

For b=0 we formally set

R0f(t)=
d
dt
{R−1f(t)}=f(t).
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In particular, using (A.2) gives

Rb{ta/C(1+a)}=ta−b/C(1+a−b), a > −1.

Let AC(0, T) be the space of absolutely continuous functions on
(0, T). If f(t) ¥ L1(0, T), then almost everywhere in t ¥ (0, T)

Rb1(R−b2f(t))=R−(b2−b1)f(t), b2 \ b1 \ 0

and

Rb1(R−b2f(t))=Rb1−b2f(t), b1 > b2 \ 0

if the derivative Rb1−b2f(t) exists almost everywhere in (0, T).
If f(t) ¥ L1(0, T) and, in addition,

R−(p−b2)f(t) ¥ ACp(0, T), p−1 < b2 [ p, p \ 1,

then the equality

R−b1Rb2f(t)=Rb2−b1f(t)− C
p

k=1
{Rb2−kf(y)}|y=0

tb1−k

C(1+b1−k)
(A.4)

is true almost everywhere in (0, T) for any b1 > 0. In particular, from (A.4)
with b1=1−b, b2=1, we obtain the Caputo–Djrbashian regularized frac-
tional derivative

Dbf(t)=R−(1−b) d
dt
f(t)

=
1

C(1−b)
5 d
dt

F
t

0

f(y) dy
(t−y)b

−
f(0)
tb
6

=(Rbf)(t)−
f(0)

tbC(1−b)
.

B. THE BESSEL AND RIESZ POTENTIALS

This appendix is based on Donoghue, (25) Stein, (73) and Anh et al. (5) The
integral operator

Ic=(I−D)−c/2

Spectral Analysis of Fractional Kinetic Equations with Random Data 1377

File: KAPP/822-joss/104_5-6 342353 - Page : 29/39 - Op: DS - Time: 14:01 - Date: 13:08:2001



for c ¥ R+ is called the Bessel potential of order c, whose kernel Ic is given
by

Ic(x)=
1

(4p)c/2
1

C(c/2)
F
.

0
e−p |x|

2/se−s/4ps (−n+c)/2
ds
s
.

Here, D is the Laplacian. The following proposition gives some fundamen-
tal properties of Bessel potentials.

Proposition 1. For each c ¥ R+, Ic(x) ¥ L1(Rn), and its Fourier
transform is

Îc(l)=(2p)−n/2(1+|l|2)−c/2, l ¥ Rn.

For f ¥ Lp(Rn), 1 [ p [.,

Ic(f)=Icff

(the convolution of Ic and f), and

IcfIb=I(c+b).

Therefore,

Ic ·Ib=I(c+b), c \ 0, b \ 0.

On the other hand, the inverse of operator Ic is the operator I− c=
(I−D)c/2, for c \ 0.

Proof. See Stein, (73) pp. 130–135. L

The Riesz potential is defined by Ja=(−D)−a/2, 0 < a < n. Then, for
f ¥S (Rn),

Ja(f)(x)=
1
g(a)

F
R
n
|x−y|a−n f(y) dy

=(Jaff)(x),

where

g(a)=
pn/22aC(a/2)
C(n/2−a/2)

,

1378 Anh and Leonenko

File: KAPP/822-joss/104_5-6 342353 - Page : 30/39 - Op: DS - Time: 14:01 - Date: 13:08:2001



and

Ja(t)=
|t|a−n

g(a)

is the Riesz kernel, whose Fourier transform is

Ĵa(l)=(2p)−n/2 |l|−a, l ¥ Rn.

C. FOX’S H-FUNCTIONS

We reproduce the definition and the basic properties of Fox’s
H-functions (see Braaksma, (13) Srivastava et al. (72) or Prudnikov et al. (61)).

Fox’s H-functions are defined for z ¥ C, z ] 0 by the Mellin–Barnes-
type integral

Hm, np, q (z)=H
m, n
p, q
1z : (a1, a1)...(ap, ap)
(b1, b1)...(bq, bq)

2= 1
2pi

F
L
h(s)z−s ds, (C.1)

where h(s) is given by

h(s)=A(s) B(s)/(C(s) D(s))

with

A(s)=Pm
j=1C(bj+bjs), B(s)=Pn

j=1C(1−aj−ajs),

C(s)=Pq
j=m+1C(1−bj−bjs), D(s)=Pp

j=n+1C(aj+ajs).

The integers m, n, p and q satisfy 0 [ n [ p, 1 [ m [ q, and empty products
are interpreted as unity. The parameters a1, ..., ap and b1, ..., bq are positive
real numbers, whereas a1, ..., ap and b1, ..., bq are complex numbers.

In (C.1) z−s=exp {−s log |z|− i arg z} and arg z is not neccessarily the
principal value. The parameters are restricted by the condition
P(A) 5P(B)=”, where

P(A)={poles of C(1−ai+ais)}=3
1−ai+k

ai
¥ C; i=1, ..., n, k ¥N04 ,

P(B)={poles of C(bi+bis)}=3
−bi−k

bi
¥ C; i=1, ..., m, k ¥N04 ,

N0={0, 1, 2, ...}.
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The integral (C.1) converges if one of the following conditions holds
(Prudnikov et al., (61) Braaksma, (13) Hilfer (37)):

L=L(c−i., c+i.; P(A),P(B)),

|arg z| < wp/2, w > 0; (C.2a)

L=L(c−i., c+i.; P(A),P(B)),

|arg z|=wp/2, w \ 0, cM < −Re c; (C.2b)

L=L(−.+im1, −.+im2; P(A),P(B)),

M > 0, 0 < |z| <.; (C.2c)

L=L(−.+im1, −.+im2; P(A),P(B)),

M=0, 0 < |z| < R; (C.2d)

L=L(−.+im1, −.+im2; P(A),P(B)),

M=0, |z|=R, w \ 0, Re c < 0; (C.2e)

L=L(.+im1,.+im2; P(A),P(B)),

M < 0, 0 < |z| <.; (C.2f)

L=L(.+ic1,.+ic2; P(A),P(B)),

M=0, |z| > R; (C.2g)

L=L(.+ic1,.+ic2; P(A),P(B)),

M=0, |z|=R, w \ 0, Re c < 0, (C.2h)

where m1 < m2. Here L(z1, z2; G1, G2) denotes a contour in the complex plane
starting at z1, ending at z2 and separating the points in G1 from those in G2,
and the following expressions are employed:

w=C
n

j=1
aj− C

p

j=n+1
aj+C

m

j=1
bj− C

q

j=m+1
bj,

M=C
q

j=1
bj− C

p

j=1
aj > 0,

R=D
p

j=1
a −ajj D

q

i=1
bbii ,

c=C
q

j=1
bj− C

p

i=1
ai+(p−q)/2+1.
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The H-functions are analytic for z ] 0 and multivalued (single-valued
on the Riemann surface of log z). The H-functions may be represented as
the series (Braaksma, (13) Hilfer (37))

Hm, np, q 1z :
(a1, a1)...(ap, ap)
(b1, b1)...(bq, bq)

2=C
m

i=1
C
.

k=0
cik
(−1)k

k!bi
z (bi+k)/bi, (C.3)

where

cik=
<m
j=1, j ] i C(bj−(bi+k) bj/bi)<n

j=1 C(1−aj+(bi+k) aj/bi)
<q
j=m+1 C(1−bj+(bi+k) bj/bi)<p

j=n+1 C(aj−(bi+k) aj/bi)

whenever M \ 0, L is as in (C.2a), (C.2b) or (C.2c), (C.2d), (C.2e) and the
poles in P(A) are simple.

Similarly,

Hm, np, q 1z :
(a1, a1)...(ap, ap)
(b1, b1)...(bq, bq)

2=C
m

i=1
C
.

k=0
cik
(−1)k

k!ai
z−(1+ai+k)/ai, (C.4)

where

cik=
<n
j=1, j ] i C(1−aj−(1−ai+k) aj/ai)<m

j=1 C(bj+(1−ai+k) bj/ai)
<p
j=n+1 C(aj+(1−ai+k) aj/ai)<q

j=m+1 C(1−bj−(1−ai+k) bj/ai)

whenever M [ 0, L is as given in (C.2a), (C.2b) or (C.2f), (C.2g), (C.2h)
and the poles in P(A) are simple. In particular, if M> 0, we obtain from
(C.3) that

H1, np, q(z)=
1
b1

C
.

k=0

(−1)k

k!
B(sk)

C(sk) D(sk)
z−sk, (C.5)

where sk=−(k+b1)/b1, k ¥N0. To get this representation, one transforms
the contour L into the left loop and uses the residue theorem with the
‘‘left’’ poles. In the case M< 0 one can transform the contour L into the
right loop and uses the residue theorem with the ‘‘right’’ poles to get

Hm, 1p, q (z)=
1
a1

C
.

k=0

(−1)k

k!
A(sk)

C(sk) D(sk)
z−sk, (C.6)

where sk=(k+1−a1)/a1, k ¥N0.
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For n=0, there are cases where H-functions become exponentially
small in certain sectors when |z| becomes large (see Braaksma, (13) Eqs.
(2.16), (2.36), (2.43)). For m=q, we have

Hq, 0p, q(z) ’ Fz
c/M exp {−z1/MMR−1/M} (C.7)

for large |z|, uniformly on every closed sector with vertex at the origin con-
tained in |arg z| < wp/2, where

c=C
q

j=1
bj− C

p

j=1
aj+(p−q+1)/2,

F=(2p) (p−q+1)/2 R−c/MM−1/2 D
p

j=1
a (1/2)−ajj D

q

j=1
bbj−(1/2)j .

Symmetries in the parameters of the H-function are detected by regarding
the definition (C.1). For example, the H-function is symmetric in the set of
pairs (a1, a1), ..., (an, an), in (an+1, an+1), ..., (ap, ap), in (b1, b1), ..., (bm, bm)
and in (bm+1, bm+1), ..., (bq, bq).

We give the following reduction formula:

Hm, np, q 1z :
(a1, a1)...(ap, ap)

(b1, b1)...(bq−1, bq−1)(a1, a1)
2

=Hm, n−1p−1, q−1
1z : (a2, a2)...(ap, ap)
(b1, b1)...(bq−1, bq−1)

2 . (C.8)

The next important identities needed in the paper are

Hm, np, q 1z :
(a1, a1)...(ap, ap)
(b1, b1)...(bq, bq)

2=Hn, mq, p1z
1
z
: (1−b1, b1)...(1−bq, bq)
(1−a1, a1)...(1−ap, ap)

2, (C.9)

Hm, np, q (z :
(a1, a1)...(ap, ap)
(b1, b1)...(bq, bq)

2=cHm, np, q (zc :
(a1, ca1)...(ap, cap)
(b1, cb1)...(bq, cbq)

2, (C.10)

zsHm, np, q 1z :
(a1, a1)...(ap, ap)
(b1, b1)...(bq, bq)

2=Hm, np, q 1z :
(a1+sa1, a1)...(ap+sap, ap)
(b1+sb1, b1)...(bq+sbq, bq)

2.
(C.11)
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Many well-known special functions are included in the class of
H-functions. For example,

b−1xb/b exp {−x1/b}=H1, 00, 1 1x :
−
(b, b)
2, (C.12)

or the Mittag–Leffler function (2.5)

Eb(−x)=H
1, 1
1, 2
1x : (0, 1)
(0, 1) (0, b)

2=F
.

0
e−xtH1, 01, 1 1 t :

(1−b, b)
(0, 1)
2 dt. (C.13)

For the Bessel function of the first kind of order n we have

Jn(x)=C
.

k=0

(−1)k(x/2)n+2k

k!C(k+n+1)
=H1, 00, 2 1

x2

4
:
(n/2, 1)(− n/2, 1)

2 , (C.14)

while for Wright’s generalized Bessel function

Jn
l(x)=C

.

k=0

(−1)k (x)k

k!C(1+l+nk)
=H1, 00, 2 1x :

−
(0, 1)(−l, n)

2 . (C.15)

From (5.14) of Srivastava et al. (72) and (C.14) (see also Prudnikov et
al., (61) p. 355, relation 2.25.3.2) we get

F
.

0
xa−1Jn

l(sx) H
m, n
p, q
1Wz r : (a1, a1)...(ap, ap)

(b1, b1)...(bq, b1)
2 dx

=
2a−1

sa
Hm, n+1p+2, q
1W 1 2

s
2 r : (1−

a+r
2 ,

r
2)(a1, a1)...(ap, ap)(1−

a− n
2 ,

r
2)

(b1, b1)...(bq, bq)
2 ,

(C.16)

where r, s > 0; |arg W| < wp/2, w > 0 (see (C.2a–C.2h);

Re(a+n)+r min
1 [ j [ m

Re(bj/bj) > 0; Re a+r max
1 [ j [ n

aj−1
aj
<
3
2
. (C.17)
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From (C.13), (C.16) and (C.9) we obtain

F
.

0
rn/2J(n/2)−1(r |x|) Eb(−mtbrc) dr

=
2n/2

|x| (n+2)/2
H1, 23, 2 1 tbm 1

2
|x|
2c : (1−

n
2 ,
c
2)(0, 1)(0,

c
2)

(0, 1)(0, b)
2

=
2n/2

|x| (n+2)/2
H2, 12, 3 1

|x|c

2ctbm
: (1, 1)(1, b)
(n/2, c/2)(1, 1)(1, c/2)

2 . (C.18)

From (C.17) we obtain that (C.18) holds for

b > 0, min (n, c, 2) > (n−1)/2. (C.19)

The latter condition is equivalent to c=0 if n=1; c > 1/2 if n=2; c > 1 if
n=3; c > 3/2 if n=4 and c > 2 if n=5.
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